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Abstract

Learning rewards from expert videos offers an afford-
able and effective solution to specify the intended behav-
iors for reinforcement learning tasks. In this work, we pro-
pose Diffusion Reward, a novel framework that learns re-
wards from expert videos via conditional video diffusion
models for solving complex visual RL problems. Our key
insight is that lower generative diversity is observed when
conditioned on expert trajectories. Diffusion Reward is
accordingly formalized by the negative of conditional en-
tropy that encourages productive exploration of expert-like
behaviors. We show the efficacy of our method over 10
robotic manipulation tasks from MetaWorld and Adroit with
visual input and sparse reward. Moreover, Diffusion Re-
ward could even solve unseen tasks successfully and effec-
tively, largely surpassing baseline methods. Project page
and code: diffusion-reward.github.io.

1. Introduction
Reward specification poses a fundamental challenge in rein-
forcement learning (RL), influencing the effectiveness and
alignment of an agent’s learned behavior with the intended
objectives. Manually designing dense reward functions is
burdensome and sometimes impossible, particularly in real-
world tasks such as robotic manipulation [31], where ob-
taining privileged state information is difficult. As a sub-
stitute, using sparse rewards is often favorable in these sce-
narios because of its low demand for manual effort [25].
Nonetheless, the sample efficiency of RL drops signifi-
cantly due to insufficient supervision from sparse rewards.

Learning reward functions from expert videos offers a
promising solution because of the low effort of video collec-
tion and dense task-execution information contained in the
videos [5, 42]. Given unlabeled videos, generative models
have been naturally investigated by researchers to extract in-
formative rewards unsupervisedly for RL training [27, 35].

*Equal contribution to this work.
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Figure 1. Overview. (top) We present a reward learning frame-
work in RL using video diffusion models. We perform diffusion
processes conditioned on historical frames to estimate conditional
entropy as rewards to encourage RL exploration of expert-like be-
haviors. (bottom) The mean success rate of 10 visual robotic ma-
nipulation tasks demonstrates the effectiveness of our Diffusion
Reward over 5 runs. Shaded areas are standard errors.

One classical approach builds on generative adversarial
learning to learn a discriminative reward that discerns be-
tween agent and expert observations. While straightfor-
ward, these methods underutilize the temporal information,
whose importance has been shown in solving RL [44], and
performance is brittle to the adversarial training. In light
of these issues, recent work leverages the VideoGPT [38]
to encode temporal information, and directly use the pre-
dicted log-likelihood as rewards [9]. However, it struggles
with modeling complex expert video distributions, particu-
larly those with intricate dynamics. As shown in Figure 2,
there exists a noticeable decline in the learned return is ob-
served for out-of-distribution expert videos, despite sharing
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optimal behavioral patterns with in-distribution ones.
Video diffusion models [17] — which have exhibited re-

markable performance in the domain of computer vision —
have shown great power in capturing the complex distribu-
tion of videos, such as text-to-video generation [11, 16] and
video editing [4, 24]. Recent works have also examined
their capability of modeling expert videos as generalizable
planners in robotic manipulation tasks [8, 21]. Despite these
advancements, extracting informative rewards from video
diffusion models remains an understudied area, while shin-
ing great potential for guiding RL agents to acquire exper-
tise from videos and generalizing to unseen tasks.

In this work, we propose Diffusion Reward, a reward
learning framework that leverages conditional video diffu-
sion models to capture the expert video distribution and ex-
tract dense rewards for visual RL. Our key insight is that
higher generative diversity is observed when conditioned
on expert-unlike videos, while lower given expert videos.
This rationale naturally instructs RL exploration on expert-
like behaviors by seeking lower diversity. We therefore es-
timate entropy conditioned on historical frames, which for-
malizes our insight, and augment it with a novelty-seeking
reward [3] and spare environment reward to form dense
rewards for efficient RL. In addition, to accelerate the re-
ward inference, we perform latent diffusion processes by
utilizing vector-quantized codes [12] for compressing high-
dimensional observations.

We empirically validate the efficacy of our frame-
work through experiments on 10 visual robotic manipu-
lation tasks, including 7 gripper manipulation tasks from
MetaWorld [40] and 3 dexterous manipulation tasks from
Adroit [28], exhibiting 38% and 35% performance im-
provements over the best-performing baselines given the
same training steps, respectively. Furthermore, we surpris-
ingly find that our learned reward can achieve fair zero-
shot generalization performance on unseen tasks. Figure 1
overviews this work. The primary contributions of this
work can be summarized as follows:
• We present Diffusion Reward, a novel reward learning

framework that leverages the generative modeling capa-
bilities of video diffusion models to provide dense reward
signals for RL agents.

• We show that our framework significantly outperforms
baselines on 10 visual robotic manipulation tasks.

• We find that our pre-trained reward model could produce
reasonable rewards and thus instruct RL on unseen tasks.

2. Related Work
Learning rewards from videos. Extracting supervision
signals from expert videos provides an affordable but ef-
fective solution for reward specification in RL [5, 29, 30].
A number of works have attempted to learn dense re-
wards indicating task progress by measuring the distance
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Figure 2. Rewards from different video models. Results are
averaged over 7 MetaWorld tasks with 10 random seeds for each
task. Suboptimal represents videos with 25% of actions taken by
random policy. VIPER (CE) and Diffusion Reward (LL) replace
their original rewards with conditional entropy (CE) and Log-
likelihood (LL), respectively. We observe that LL-based methods
assign relatively low rewards to unseen expert videos while CE-
based methods are able to assign near-optimal rewards to unseen
expert videos. Moreover, such a boost is enhanced by the strong
modeling ability of diffusion models.

between current observation and goal image in the latent
space [23, 42]. While promising, goal images are often hard
to obtain out of simulation, limiting their applicability to
open-world tasks [22]. On the contrary, generative models
have been widely investigated to extract rewards unsuper-
visedly without future information. One representative ap-
proach builds on generative adversarial learning [27, 35] to
discern expert-like and expert-like behaviors. Such an idea
is further improved in [9] by predicting the log-likelihood as
rewards, where the video prediction model is used to encode
more temporal information. Nevertheless, it still struggles
with modeling expert video distributions in complex tasks
featuring intricate dynamics, thus being prone to produce
unproductive rewards. In contrast, our methods leverage
the powerful modeling abilities of diffusion models and es-
timate the negative of conditional as more discriminative
rewards to expedite RL exploration. Moreover, our pre-
trained reward could be generalized to unseen tasks better.

Diffusion models for RL. Diffusion models have been
widely investigated for RL to, for instance, improve the pol-
icy expresiveness [7, 14, 37], and augment experience [6,
41]. Apart from these, some works directly learn the diffu-
sion models from offline data unconditional planners [19],
or conditional planners specified by task returns [1]. The
idea of conditional diffusion is further investigated in [8, 21]
with text as task specification, where video diffusion models
serve as planners associated with inverse dynamics. Unlike
these methods, we intend to learn informative rewards via
video diffusion models conditioned on historical frames to
accelerate online RL. Such historical conditioning has been
used in [18] to inform trajectory generation, which differs
from our focus on reward learning as well. Our work is
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Figure 3. Video prediction results. Our video diffusion model could capture the distribution of expert videos from complex tasks. The
outcomes are conditioned on two history frames and predictions. Ground truth has blue borders and prediction has orange borders.

also close to Nuti et al. [26], which has also attempted to
extract reward from two diffusion models that fit different
behaviors in 2D tasks. Differently, we learn diffusion-based
rewards simply from expert behaviors and achieve favorable
performance on complex vision-based manipulation tasks.

3. Preliminaries

Problem formulation. We consider an RL agent that in-
teracts with the environment modeled as a finite-horizon
Markov Decision Process (MDP), which is defined by a tu-
pleM = ⟨S,A, T ,R, γ⟩, where S is the state space, A is
the action space, T is the environment transition function,
R is the reward function, and γ is the discount factor. The
goal of the RL agent is to learn an optimal policy π that
maximizes the expected return E[

∑K−1
k=0 γkrk].

In this work, we focus more specifically on high-
dimensional state space with a binary sparse (i.e., 0/1 re-
ward as a success indicator of the task). Particularly, we
consider RGB images x ∈ RH×W×3 as the state observed
by the agent. This setting is motivated by the real-world
application of RL such as robotics, where vision-based sen-
sory data is more available and specifying sophisticated re-
ward often requires tedious hand-engineering, sometimes
even intractable. However, this poses great difficulty to an
RL agent, as a large amount of interaction with environ-
ments is often required, known as sample efficiency.
Expert videos. To improve the sample efficiency of RL, we
assume a set of unlabeled videos generated by the expert
policies are accessible by the agent. Notably, these videos
are action-free and gathered from multiple tasks without
task identification. We denote it as D = {D1,D2, ...,DN},
where Di is the demonstrated videos from task i. Each set
of demonstrated videos Di contains multiple expert trajec-
tories τ = {x0,x1, ...,xK−1} ∈ SK . Our goal now turns
to learning effective reward functions of such videos to ac-
celerate the online exploration of RL agents.

Data Model SSIM (↑) PSNR (↑) LPIPS (↓)

Real
VideoGPT 0.768 (±0.141) 23.35 (±4.13) 0.1017 (±0.0670)

VQ-Diffusion 0.856 (±0.114) 27.46 (±5.24) 0.0596 (±0.0450)

Sim.
VideoGPT 0.967 (±0.021) 32.28 (±3.15) 0.0067 (±0.0032)

VQ-Diffusion 0.976 (±0.009) 33.55 (±2.31) 0.0053 (±0.0029)

Table 1. Quantitative comparison of video models. Results are
evaluated on real robot videos and simulation videos from 7 Meta-
World tasks, demonstrating that video diffusion model generates
videos of higher quality than VideoGPT.

4. Method
We introduce Diffusion Reward, a novel framework that
learns rewards from expert videos via conditional video
diffusion models for solving downstream visual RL prob-
lems, as illustrated in Figure 1. At a high level, our method
leverages entropy information from video diffusion models
pre-trained on expert videos to encourage RL agents to ex-
plore expert-like trajectories more. In Section 4.1, we first
model the expert videos with the conditional video diffusion
model in the latent space. In Section 4.2, we formalize our
key insight of Diffusion Reward by estimating the history-
conditioned entropy and using its negative as reward signals
for RL training. We summarize our framework in Algo-
rithm 1 and present the overview and key implementation
details of our framework below.

4.1. Expert Video Modeling via Diffusion Model

Diffusion models [32] are probabilistic models that aim to
model the data distribution by gradually denoising a normal
distribution through a reverse diffusion process [15]. These
models showcase their power in capturing highly complex
distributions and generating samples that exhibit intricate
dynamics, motion, and behaviors in RL literature [1, 19].
Unlike prior works that model expert videos as planners,
we aim to learn reward functions from the diffusion model
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Figure 4. Conditional entropy as rewards. (left) Aggregated
learned rewards over 7 tasks from MetaWorld, which assigns ex-
pert policy high rewards while random policy low rewards. (right)
Normalized conditional entropy on both seen and unseen tasks
from MetaWorld, demonstrating that our rewards can distinguish
trajectories of high quality from those of decreasing qualities and
indicating its potential generalization ability. (top) One pair of the
evaluated expert and random trajectories is exemplified above.

trained on expert videos for RL. This motivates our video
models to achieve fast inference speed and encode temporal
information.
Latent diffusion process. Specifically, we first train an
encoder unsupervisedly from expert videos to compress
the high-dimensional observations. Here we use the VQ-
GAN method [10] to represent the image x with a vector-
quantized latent code z = Q(E(x)), where E is the en-
coder and Q is the element-wise quantizer. The whole
video is then represented by a sequence of latent variables
τ = {z0, z1, ...,zK−1}, where we overwrite the definition
of τ without ambiguity. Subsequently, the forward pro-
cess applies noise ϵ in the latent space at each time step
t ∈ 0, ..., T to the data distribution zk, resulting in a noisy
sample zt

k, where zt
k =
√
ᾱtz

0
k+
√
1− ᾱtϵ, and ᾱ is the ac-

cumulation of the noise schedule over past timesteps. To fit
data distribution, we learn a parameterized variant of noise
predictor ϵθ(zt

k) that aims to predict the noise ϵ during the
forward process. Then the parameterized reverse process
pθ(z

t−1
k |zt

k) can be approximated and performed by itera-
tive denoising a initial distribution.
Historical frames as condition. To utilize the temporal
information from expert videos with the power of video dif-
fusion, we further condition the reverse process with his-
tory frames, i.e., pθ(zt−1

k |zt
k, zc), where zc is the concate-

nation of all historical frames [z0, ...,zk−1]. This can also
be viewed as matching the distribution of expert and agent
trajectories [9]. In practice, we use a subsequence of his-
torical frames as a condition to ensure higher computation
efficiency while maintaining temporal information. Subse-

quently, one can perform the reverse process from a ran-
domly sampled noise to generate the latent code of future
frames and decode the code for video prediction, as shown
in Figure 3. In this work, we use VQ-Diffusion [12] as
our choice of video diffusion model due to its good perfor-
mance and compatibility with vector-quantized latent code,
but our framework can in principle adopt any off-the-shelf
video diffusion models. We first tokenize each latent code
z indexed by its indices that specify the respective entry in
the learned codebook of VQ-GAN, and take as a condition
embedding the concatenated tokens. The embedding is then
fed to the decoder that contains 16 transformer blocks and
softmax layers with cross attention.

4.2. Conditional Entropy as Rewards

While previous studies have explored the use of log-
likelihood as rewards with video prediction models, exem-
plified by works such as VIPER [9], this approach encoun-
ters two primary challenges. Firstly, it struggles with accu-
rately modeling the distribution of complex expert videos
featuring intricate dynamics, as shown in Table 1. Sec-
ondly, the moderate video modeling ability leads to unde-
sired rewards. This issue is evident in Figure 2, where a
significant drop in learned rewards between in-distribution
expert videos and out-of-distribution ones, though both sets
of videos demonstrate optimal behaviors.
Key insight behind Diffusion Reward. We address these
challenges by harnessing the great generative capability
of video diffusion models. Our observations indicate in-
creased generation diversity with unseen historical observa-
tions (rand.) and reduced diversity with seen ones (expert),
as shown in Table 2. This gives rise to the key insight of
our proposed Diffusion Reward: diffusion conditioned on
expert-like trajectories exhibits lower diversity where the
agent ought to be rewarded more, and the opposite holds
on unexpert-unlike ones. Such diversity discrimination not
only incentivizes RL agents to chase expert-like behaviors
but also enhances exploration through the stochasticity in-
duced by the diffusion process.

ϵ-greedy traj.
Distances as Diversity Metrics

SSIM (↑) PSNR (↑) LPIPS (↓)

0% (expert) 0.941 (±0.054) 29.91 (±5.52) 0.0171 (±0.0166)

25% 0.901 (±0.063) 26.01 (±4.62) 0.0371 (±0.0304)

50% 0.894 (±0.065) 25.65 (±4.29) 0.0421 (±0.0297)

75% 0.844 (±0.066) 22.60 (±2.53) 0.0645 (±0.0370)

100% (rand.) 0.829 (±0.730) 22.25 (±3.43) 0.0597 (±0.0364)

Table 2. Quantitative results of generative diversities. Referring
to [45], generative diversity is proportional to distances among a
batch of generated videos. Expert trajectories, which are seen dur-
ing training, show the lowest diversity while the unseen random
ones exhibit the highest diversity. Results are over 7 tasks from
MetaWorld and trajectories are generated by ϵ-greedy policies.
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Algorithm 1 Diffusion Reward

// Pretrain reward model from expert videos
1: Collect expert videos D from K tasks
2: Train diffusion model pθ on expert videos D

// Downstream RL with learned rewards
3: while not converged do
4: Act ak ∼ π(·|xk)
5: Generate M denoised samples z̃0:T

k ∼ pθ(z
0:T
k |zc)

6: Estimate entropy H(pθ(·|zc)) with z̃0:T
k ▷ Eq. (3)

7: Compute Diffusion Reward rk ← rdiffk ▷ Eq. (5)
8: Step environment xk+1 ∼ T (xk, ak)
9: Store transition (xk, ak, rk,xk+1)

10: Update policy π and rrnd with RL algorithm
11: end while

Estimation of conditional entropy. To formalize this idea,
we seek to estimate the negative conditional entropy given
historical frames zc, which in principle captures the condi-
tional generation diversity:

−H(pθ(·|zc)) = Epθ(·|zc) [log pθ(zk|zc)] . (1)

One primary challenge is the computation of the entropy in
Eq. (1), which is intractable as we have no explicit form
of the conditional distribution [34]. Therefore, we instead
attempt to estimate the variational bound of such entropy.
Specifically, we first present the variational bound of condi-
tional log-likelihood as follows:

log pθ(z
0
k|zc) ≥Eq(z0:T

k |zc)

[
log

pθ(z
0:T
k )

q(z1:T
k |z0

k, zc)

]
, (2)

where z0
k is the denoised prediction of current observa-

tion zk. This bound could be estimated via noise predic-
tor ϵθ [15, 33], or with the closed-form distribution [20, 32]
(e.g., discrete multivariate distribution). We use the latter
one as our choice of estimation because of its better com-
patibility with VQ-Diffusion.

Next, to estimate the whole entropy, we denoise from
randomly sampled noise and generate the latent variables
z̃0:T
k ∼ pθ(z

0:T
k |zc), repeating with M times. Subse-

quently, we use the generated samples from randomized
noise z̃T

k (e.g., random tokens) to estimate the whole con-
ditional entropy term as follows:

rce(xk−1) =
1

M

M∑
j=1

log
pθ(z̃

0:T
k )

q(z̃1:T
k |z̃0

k, zc)
, (3)

We visualize the aggregated reward in Figure 4 and present
curves of each task in the Appendix. The results show that
conditional entropy can successfully capture the varied gen-
erative diversity on different videos, echoed with the afore-
mentioned insight of Diffusion Reward. Notably, here we

(a) MetaWorld (7 tasks) (b) Adroit (3 tasks)

Figure 5. Task visualization. We evaluate our method on 10 chal-
lenging visual RL tasks from MetaWorld and Adroit, with 64×64-
dimensional RGB images and sparse rewards. Tasks are chosen to
cover a wide range of manipulation skills.

use the standardized entropy reward r̄ce to mitigate the bur-
den of hyperparameter tuning, as we observe that the scale
of conditional entropy varies significantly across different
tasks and domains, partially attributed to the varied objects
and environment dynamics. Concretely, the conditional en-
tropy is standardized by the empirical mean and standard
deviation of the expert videos:

r̄ce = (rce −mean(D, rce)) / std(D, rce). (4)

Exploration reward. As the reward r̄ce incentivizes the
agent to mimic the behavioral patterns of the expert, the ex-
ploration may still be prohibitively challenging in complex
tasks with high-dimensional input. To alleviate this issue,
we incorporate RND [3] as the exploration reward, termed
as rrnd.

Diffusion Reward. To this end, we combine our proposed
diffusion-based entropy reward with the exploration reward
and the raw sparse reward rspar from the environment,

rdiff = (1− α) · r̄ce + α · rrnd + rspar, (5)

where α is the reward coefficient that steers the weight of
two rewards. The integration of rspar is crucial, as the
complete absence of environmental supervision may hinder
progress in tackling complex tasks.

4.3. Training Details

We first provide the expert videos from various tasks as the
whole dataset for pertaining reward models, which can be
generated by scripted policies or other means. Then, we first
use VQ-GAN [10] to train the encoder, associated with 8×8
size of codebook across all domains, with an additional per-
ceptual loss [43] calculated by a discriminator to increase
perceptual quality. We subsequently use VQ-Diffusion [12]
for training the conditional video diffusion model, where
the number of condition frames is set as 2 for all tasks. For
reward inference, the reward coefficient is set as 0.95 for
all tasks except 0 for the Pen task. Moreover, during the
diffusion process, we also use a DDIM-like sampling strat-
egy [33] to accelerate the diffusion process with denoise
steps set as 10 and repeated with 1 times for all tasks, which
shows fair performance and retains high inference speed.
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Figure 6. Main results. Success rate for our method and baselines on 7 gripper manipulation tasks from MetaWorld and 3 dexterous
manipulation tasks from Adroit with image observations. Our method achieves prominent performance on all tasks, and significantly
outperforms baselines on complex door and hammer tasks. Results are means of 5 runs with standard errors (shaded area).

5. Experiments

In this section, we first introduce the overall experimental
setups in Section 5.1. We then present the significant per-
formance improvement of our method against competitive
baselines in Section 5.2, investigate the generalization ca-
pability and effectivenss on real robot videos of our learned
reward in Section 5.3 and Section 5.4, respectively. We also
conduct comprehensive ablations to study the effect of each
component and implementation details in Section 5.5.

5.1. Experimental Setup

Simulation envrionments. We intend to demonstrate the
effectiveness of Diffusion Reward on 10 complex visual
robotic manipulation tasks, including 7 gripper manipu-
lation tasks from MetaWorld [40] and 3 dexterous hand
manipulation tasks from Adroit [28], as visualized in Fig-
ure ??. We choose these two simulation environments be-
cause of their task diversity and complexity. Each task
is associated with 64 × 64-dimensional RGB images, ±4
pixel shift augmentation [39], and 0/1 environmental sparse
reward. For pertaining reward models, we collect 20 ex-
pert videos for each Metaword task via the scripted pol-
icy provided by the official repository, and 50 for Adroit
via the policies trained with performant RL method [36].
For downstream RL training, the interaction budget of the
Adroit task is set as 3 million to ensure convergence of us-
ing our rewards, and is respectively set for the MetaWorld
task due to the varied task complexity.

Baselines. We compare our method against the followings:
• Raw Sparse Reward that uses the environmental sparse

reward. This comparison tests the benefit of adding our
pre-trained reward.

• Random Network Distillation (RND, [3]) that encour-
ages exploration with a novelty-seeking reward. This
comparison tests the benefit of rewarding the agent with
expert-like behaviors.

• Adversarial Motion Priors (AMP, [27]) that learns a dis-
criminator to discern agent behaviors and expert behav-
iors based on current observations. This comparison tests
the benefit of encoding temporal information in learned
reward and utilization of novelty-seeking reward.

• Video Prediction Rewards (VIPER, [9]) and its stan-
dardized variant (VIPER-std.) that use VideoGPT [38]
as video prediction model and predicted log-likelihood of
agent observation as reward. This comparison tests the
benefit of utilizing the generative capability of video dif-
fusion models and the conditional entropy as a more ex-
plorative reward.

For a fair comparison, all methods use DrQv2 [39] as
the RL backbone and maintain all settings except reward-
pretraining (if exist) identical.

5.2. Main Results

Comparison with non-pretraining methods. We present
the learning curves of success rates for each method over
two simulation domains in Figure 1 and 6. The results show
that solely using sparse task rewards enables progress in rel-
atively straightforward tasks such as Reach and Dial Turn.
However, it encounters significant challenges in more com-
plex ones, exemplified by the Door and Hammer within
the dexterous hand manipulation domain. The incorpora-
tion of pure novelty-seeking rewards (RND) unsurprisingly
enhances the RL agent’s exploration, particularly evident
in addressing moderately complex tasks like Coffee Push
and Assembly. Nevertheless, the performance on dexter-
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Figure 7. Success rate curves on 5 unseen MetaWorld tasks. Diffusion Reward could generalize to unseen tasks directly and produce
reasonable rewards, largely surpassing other baselines. Results are means of 4 runs with standard errors (shaded area).

ous hand manipulation tasks is still unsatisfactory due to
the lack of expert-instructed exploration at prohibitively
large configuration space. Conversely, AMP explicitly em-
ploys expert-guided rewards to incentivize the exploration
of expert-like behaviors. While it generally outperforms
RND in simpler tasks, its efficacy diminishes in more com-
plex ones such as Lever Pull and Hammer.
Comparison with reward pretraining method. The
above observations suggest that the combination of expert-
instructed rewards and novelty-seeking rewards is likely to
perform favorably. Despite the incorporation of such a com-
bination in the VIPER reward, its empirical performance
unexpectedly falls short of both RND and AMP. We posit
this is attributed to the significantly varied scales of expert-
instructed rewards (i.e., log-likelihood), which may elimi-
nate the effect of novelty-seeking rewards. VIPER-std alle-
viates this issue and shows better performance than the non-
standardized version, especially on Coffee Push and Pen,
while still underperforming our method. These results are in
line with two limitations outlined in Section 4.2 and further
verified in Figure 2, indicating VIPER’s struggle in captur-
ing complex video distributions within intricate tasks. In
sharp contrast to VIPER, our proposed method not only uti-
lizes the modeling capabilities of diffusion models, but also
uses conditional entropy as a reward function to accelerate
exploration. The results showcase remarkable performance
improvements of 38% and 35% over the best-performing
baselines with the same training steps across MetaWorld
and Adroit, respectively.

5.3. Zero-Shot Reward Generalization

Reward visualization. Video diffusion models have ex-
hibited powerful abilities for modeling videos and, notably,
for generating samples beyond their training data, as ex-
emplified in text-to-image video generation [11, 16]. Such
an advance motivates our exploration into the potential of
Diffusion Reward to generalize to previously unseen tasks.
To investigate this, we start by visualizing the learned re-
turns of trajectories with varying qualities derived from 15
unseen gripper manipulation tasks in MetaWorld (see Fig-
ure 4). Interestingly, the distinctions between trajectories
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Figure 8. Reward curve of real robot videos. Our method as-
signs higher rewards to expert videos than to random videos.

of different qualities are less noticeable in comparison to
those observed in tasks seen during training. Neverthe-
less, our pre-trained reward model still exhibits a consistent
trend where expert-like behaviors receive relatively higher
learned returns, owing to the generalization prowess of the
video diffusion model.
RL performance. Subsequently, we directly apply our pre-
trained rewards to 5 tasks involving diverse objects without
additional tuning. The outcomes, as shown in Figure 7, af-
firm that our reward effectively guides RL exploration and
largely outperforms other baseline methods across all tasks.
Notably, our approach proves helpful in constraining the ex-
ploration space of RND due to its retained ability to dis-
criminate between expert-like and expert-unlike behaviors.
In contrast, VIPER struggles to generalize effectively on
most tasks, partially attributed to the combined limitations
of the adopted video models and log-likelihood rewards.
These results not only verify the efficacy of our method, but
also point towards the potential of employing larger diffu-
sion models and integrating other modalities (e.g., text em-
bedding for task specification) to enhance the generalization
capabilities of our approach further.

5.4. Real Robot Evaluation

We consider the real robot task that aims to pick up a bowl
on the table. To train our reward model, we collect 20 real
robot videos (10 expert and 10 random) with an Allegro
hand, a Franka arm, and a RealSense. Visualization results

7



0.0 0.5 1.0 1.5 2.0 2.5 3.0
Number of Frames (×106)

0

20

40

60

80

100

Su
cc

es
s 

R
at

e 
(%

)

(a) Model + Reward

Diffusion-CE
Diffusion-LL

VideoGPT-CE
VideoGPT-LL

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Number of Frames (×106)

0

20

40

60

80

100
(b) # of Denoising Steps

2
5

10
20

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Number of Frames (×106)

0

20

40

60

80

100
(c) Sampling Noise

w/ sampling noise
w/o sampling noise

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Number of Frames (×106)

0

20

40

60

80

100
(d) Reward Coefficient

0.0
0.2

0.5
0.75

0.95
1.0

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Number of Frames (×106)

0

20

40

60

80

100
(e) Context Length

1
2

4
8

Figure 9. Ablations. Success rate curves for ablated versions of Diffusion Reward, aggregated over Door and Hammer from Adroit. (a)
We test the combinations of generative models and rewards to show the benefit of estimating conditional entropy with the diffusion model.
(b) We ablate the choice of the number of denoising steps. (c) We demonstrate that the inherent randomness of Diffusion Reward from the
reverse process helps RL exploration. (d) We ablate the choice of reward coefficient. (e) We test the effect of the number of conditional
frames. Results are means of 3 seeds with standard error (shaded area). Red is our default.

in Figure 8 show that Diffusion Reward can appropriately
assign expert videos relatively higher rewards and, in con-
trast, random videos lower rewards, indicating the potential
of our method for real-world robot manipulation tasks. We
present more curves of multiple trials in the Appendix.

5.5. Ablation Studies

As shown in Figure 9, we ablate key design choices in our
proposed framework in the previous experiments, aiming
to reveal more insights into the quantitative performance of
our method. We present more detailed analyses below.

Conditional entropy with diffusion model. As our
method has demonstrated better performance than VIPER,
we take a further step to see the joint effect of the re-
ward types and the video prediction models. Specifi-
cally, we systematically evaluate all possible combinations
of conditional entropy and log-likelihood as reward sig-
nals, each paired with either diffusion-based or transformer-
based video prediction models. Note that the same vector-
quantized encoder is used for all models, ensuring the vari-
ations are solely attributable to the chosen video prediction
model and reward. The outcomes consistently align with
the observations delineated in Figure 2, indicating two-fold
conclusions: (1) video diffusion models are more adept at
capturing the complex distribution of expert videos in com-
plex tasks, thus resulting in more informative rewards; (2)
employing conditional entropy as rewards prove more pro-
ductive in RL exploration than using log-likelihood, par-
tially owing to the more generalizable reward inference on
trajectories unseen in reward pretraining stage.

Denoising steps. The number of timesteps involved in the
reverse process governs the quality and diversity of gener-
ated frames [33]. This study seeks to investigate its impact
on the derived reward and subsequent RL performance by
gradually increasing the number of denoising steps from 2
to 20. The findings indicate that an intermediate choice,
approximately around 10 steps, achieves the best perfor-
mance. This suggests that an intermediate choice balances

generative quality and diversity well, thereby producing ef-
fective rewards for RL exploration. Furthermore, we ob-
serve that the speed of reward inference declines with an
increase in denoising steps. For instance, the Frames Per
Second (FPS) during RL training drops from approximately
100 with 2 steps to 60 with 20 steps in Adroit tasks with
NVIDIA A40 , suggesting the importance of adopting ad-
vanced techniques to expedite the diffusion process.

Sampling noise in diffusion process. We hypothesize
that the introduction of randomness in the diffusion pro-
cess holds the potential to enhance RL exploration, akin
to the stochastic characteristics inherent in maximum en-
tropy RL [46]. To substantiate this point, we design a vari-
ant of Diffusion Reward wherein the sampling noise is de-
liberately set as 0 during the reverse process, ensuring the
reward becomes deterministic given the identical histori-
cal observations. The outcomes show a discernible degra-
dation in performance when employing a deterministic re-
ward. Notably, this decline in performance aligns with re-
sults observed when combining the diffusion model with
log-likelihood rewards, wherein the rewards are also deter-
ministic. Consequently, our findings demonstrate that the
inherent randomness of Diffusion Reward from the reverse
process indeed contributes to RL exploration.

Reward coefficient α. The reward coefficient α determines
the relative importance of the conditional entropy reward
against novelty-seeking. We investigate the effect of this
parameter by gradually decreasing the value of α from 1
to 0 and repeatedly train the RL agent with the remain-
ing settings identical. The results show that α around 0.95
achieves the best performance, while too-large ones (akin
to RND only) and too-small ones (akin to no RND) exhibit
significant performance drops. This suggests the domina-
tion of Diffusion Reward may still result in getting stuck to
local optima, while our proposed reward effectively helps
RL agent to narrow down the wide intended exploration
space of novelty-seeking rewards.

Context length. The number of historical frames deter-
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mines the extent of temporal information being encoded
during video diffusion, thus influencing the generating pro-
cess of video diffusion and induced reward inference. To
investigate its effect on downstream RL, we test different
choices of context length. The results suggest that opting
for 1 or 2 historical frames proves sufficient to generate
highly effective rewards, owing to the robust generative ca-
pabilities inherent in the diffusion model. Interestingly, a
marginal decline in performance is observed when the con-
text length is extended to 4 or 8 frames. This phenomenon
may be attributed to potential overfitting to expert trajec-
tories, resulting in inferred rewards that exhibit suboptimal
generalization to previously unseen trajectories.

6. Conclusion
In this work, we propose Diffusion Reward, a novel frame-
work that extracts dense rewards from a pre-trained con-
ditional video diffusion model for reinforcement learning
tasks. We first pre-train a video diffusion model on ex-
pert videos and find that the entropy of the predicted dis-
tribution well discriminates the expert-level trajectories and
under-expert-level ones. Therefore, we use its standard-
ized entropy, plus the exploration reward and the sparse en-
vironmental reward, as an informative reward signal. We
evaluate Diffusion Reward over 10 visual robotic manipu-
lation tasks from MetaWorld and Adroit and observe promi-
nent performance improvements over 2 domains. We also
demonstrate that our pre-trained reward could directly pro-
duce reasonable rewards in unseen tasks, largely surpassing
baseline methods. This underscores the potential of large-
scale pretrained diffusion models in reward generalization.

Future work will leverage larger diffusion models
sourced from a wider dataset to solve diverse simulation and
real-world tasks. The incorporation of additional modal-
ities, such as language, will be explored to augment the
generalization capabilities of Diffusion Reward. In addi-
tion, enhancing the diffusion-based reward itself, including
strategies to balance entropy reward and exploration reward
and the estimations of conditional entropy, holds promise
for yielding better outcomes.

References
[1] Anurag Ajay, Yilun Du, Abhi Gupta, Joshua Tenenbaum,

Tommi Jaakkola, and Pulkit Agrawal. Is conditional gen-
erative modeling all you need for decision-making? In In-
ternational Conference on Learning Representations (ICLR),
2023. 2, 3

[2] Samy Bengio, Oriol Vinyals, Navdeep Jaitly, and Noam M.
Shazeer. Scheduled sampling for sequence prediction with
recurrent neural networks. In Advances in Neural Informa-
tion Processing Systems (NeurIPS), 2015. 11

[3] Yuri Burda, Harrison Edwards, Amos J. Storkey, and Oleg
Klimov. Exploration by random network distillation. In In-

ternational Conference on Learning Representations (ICLR),
2019. 2, 5, 6

[4] Duygu Ceylan, Chun-Hao P Huang, and Niloy J Mitra.
Pix2video: Video editing using image diffusion. In Proceed-
ings of the IEEE/CVF International Conference on Com-
puter Vision (ICCV), 2023. 2

[5] Annie S. Chen, Suraj Nair, and Chelsea Finn. Learning gen-
eralizable robotic reward functions from ”in-the-wild” hu-
man videos. In Robotics: Science and Systems (RSS), 2021.
1, 2

[6] Zoey Chen, Sho Kiami, Abhishek Gupta, and Vikash Ku-
mar. Genaug: Retargeting behaviors to unseen situations via
generative augmentation. ArXiv, abs/2302.06671, 2023. 2

[7] Cheng Chi, Siyuan Feng, Yilun Du, Zhenjia Xu, Eric
Cousineau, Benjamin Burchfiel, and Shuran Song. Diffu-
sion policy: Visuomotor policy learning via action diffusion.
In Robotics: Science and Systems (RSS), 2023. 2

[8] Yilun Du, Mengjiao Yang, Bo Dai, Hanjun Dai, Ofir
Nachum, Joshua B Tenenbaum, Dale Schuurmans, and
Pieter Abbeel. Learning universal policies via text-guided
video generation. In Advances in Neural Information Pro-
cessing Systems (NeurIPS), 2023. 2

[9] Alejandro Escontrela, Ademi Adeniji, Wilson Yan, Ajay
Jain, Xue Bin Peng, Ken Goldberg, Youngwoon Lee, Dani-
jar Hafner, and Pieter Abbeel. Video prediction models as
rewards for reinforcement learning. In Advances in Neural
Information Processing Systems (NeurIPS), 2023. 1, 2, 4, 6,
11

[10] Patrick Esser, Robin Rombach, and Bjorn Ommer. Taming
transformers for high-resolution image synthesis. In Pro-
ceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition (CVPR), 2021. 4, 5, 11

[11] Patrick Esser, Johnathan Chiu, Parmida Atighehchian,
Jonathan Granskog, and Anastasis Germanidis. Structure
and content-guided video synthesis with diffusion models.
In Proceedings of the IEEE/CVF International Conference
on Computer Vision (ICCV), 2023. 2, 7

[12] Shuyang Gu, Dong Chen, Jianmin Bao, Fang Wen, Bo
Zhang, Dongdong Chen, Lu Yuan, and Baining Guo. Vec-
tor quantized diffusion model for text-to-image synthesis. In
Proceedings of the IEEE/CVF Conference on Computer Vi-
sion and Pattern Recognition (CVPR), 2022. 2, 4, 5, 11

[13] Nicklas Hansen, Zhecheng Yuan, Yanjie Ze, Tongzhou Mu,
Aravind Rajeswaran, Hao Su, Huazhe Xu, and Xiaolong
Wang. On pre-training for visuo-motor control: Revisiting a
learning-from-scratch baseline. In International Conference
on Machine Learning (ICML), 2023. 11

[14] Philippe Hansen-Estruch, Ilya Kostrikov, Michael Janner,
Jakub Grudzien Kuba, and Sergey Levine. Idql: Implicit
q-learning as an actor-critic method with diffusion policies.
ArXiv, abs/2304.10573, 2023. 2

[15] Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising dif-
fusion probabilistic models. In Advances in Neural Informa-
tion Processing Systems (NeurIPS), 2020. 3, 5

[16] Jonathan Ho, William Chan, Chitwan Saharia, Jay Whang,
Ruiqi Gao, Alexey Gritsenko, Diederik P Kingma, Ben
Poole, Mohammad Norouzi, David J Fleet, et al. Imagen

9



video: High definition video generation with diffusion mod-
els. ArXiv, abs/2210.02303, 2022. 2, 7

[17] Jonathan Ho, Tim Salimans, Alexey Gritsenko, William
Chan, Mohammad Norouzi, and David J. Fleet. Video diffu-
sion models. ArXiv, abs/2204.03458, 2022. 2

[18] Jifeng Hu, Yanchao Sun, Sili Huang, SiYuan Guo, Hechang
Chen, Li Shen, Lichao Sun, Yi Chang, and Dacheng Tao. In-
structed diffuser with temporal condition guidance for offline
reinforcement learning. ArXiv, abs/2306.04875, 2023. 2

[19] Michael Janner, Yilun Du, Joshua B Tenenbaum, and Sergey
Levine. Planning with diffusion for flexible behavior syn-
thesis. In International Conference on Machine Learning
(ICML), 2022. 2, 3

[20] Diederik P Kingma and Max Welling. Auto-encoding varia-
tional bayes. ArXiv, abs/1312.6114, 2013. 5, 11

[21] Po-Chen Ko, Jiayuan Mao, Yilun Du, Shao-Hua Sun,
and Joshua B Tenenbaum. Learning to Act from Ac-
tionless Video through Dense Correspondences. ArXiv,
abs/2310.08576, 2023. 2

[22] Corey Lynch and Pierre Sermanet. Language conditioned
imitation learning over unstructured data. In Robotics: Sci-
ence and Systems (RSS), 2020. 2

[23] Yecheng Jason Ma, Shagun Sodhani, Dinesh Jayaraman, Os-
bert Bastani, Vikash Kumar, and Amy Zhang. Vip: Towards
universal visual reward and representation via value-implicit
pre-training. In International Conference on Learning Rep-
resentations (ICLR), 2023. 2

[24] Eyal Molad, Eliahu Horwitz, Dani Valevski, Alex Rav
Acha, Yossi Matias, Yael Pritch, Yaniv Leviathan, and Yedid
Hoshen. Dreamix: Video diffusion models are general video
editors. ArXiv, abs/2302.01329, 2023. 2

[25] Soroush Nasiriany, Vitchyr Pong, Steven Lin, and Sergey
Levine. Planning with goal-conditioned policies. In Ad-
vances in Neural Information Processing Systems (NeurIPS),
2019. 1

[26] Felipe Nuti, Tim Franzmeyer, and João F. Henriques. Ex-
tracting reward functions from diffusion models. In Ad-
vances in Neural Information Processing Systems (NeurIPS),
2023. 3

[27] Xue Bin Peng, Ze Ma, Pieter Abbeel, Sergey Levine, and
Angjoo Kanazawa. Amp: Adversarial motion priors for styl-
ized physics-based character control. ACM Trans. Graph
(ToG)., 2021. 1, 2, 6

[28] Aravind Rajeswaran, Vikash Kumar, Abhishek Gupta, John
Schulman, Emanuel Todorov, and Sergey Levine. Learning
complex dexterous manipulation with deep reinforcement
learning and demonstrations. In Robotics: Science and Sys-
tems (RSS), 2018. 2, 6, 11

[29] Pierre Sermanet, Kelvin Xu, and Sergey Levine. Unsu-
pervised perceptual rewards for imitation learning. ArXiv,
abs/1612.06699, 2016. 2

[30] Pierre Sermanet, Corey Lynch, Yevgen Chebotar, Jasmine
Hsu, Eric Jang, Stefan Schaal, and Sergey Levine. Time-
contrastive networks: Self-supervised learning from video.
In IEEE International Conference on Robotics and Automa-
tion (ICRA), 2017. 2

[31] Avi Singh, Larry Yang, Kristian Hartikainen, Chelsea Finn,
and Sergey Levine. End-to-end robotic reinforcement learn-
ing without reward engineering. ArXiv, abs/1904.07854,
2019. 1

[32] Jascha Sohl-Dickstein, Eric Weiss, Niru Maheswaranathan,
and Surya Ganguli. Deep unsupervised learning using
nonequilibrium thermodynamics. In International Confer-
ence on Machine Learning (ICML), 2015. 3, 5, 11

[33] Jiaming Song, Chenlin Meng, and Stefano Ermon. Denois-
ing diffusion implicit models. In International Conference
on Learning Representations (ICLR), 2022. 5, 8

[34] Yang Song, Jascha Sohl-Dickstein, Diederik P Kingma, Ab-
hishek Kumar, Stefano Ermon, and Ben Poole. Score-based
generative modeling through stochastic differential equa-
tions. ArXiv, abs/2011.13456, 2020. 5

[35] Faraz Torabi, Garrett Warnell, and Peter Stone. Gen-
erative adversarial imitation from observation. ArXiv,
abs/1807.06158, 2018. 1, 2

[36] Che Wang, Xufang Luo, Keith W. Ross, and Dongsheng Li.
Vrl3: A data-driven framework for visual deep reinforce-
ment learning. In Advances in Neural Information Process-
ing Systems (NeurIPS), 2022. 6

[37] Zhendong Wang, Jonathan J Hunt, and Mingyuan Zhou. Dif-
fusion policies as an expressive policy class for offline rein-
forcement learning. In International Conference on Learning
Representations (ICLR), 2023. 2

[38] Wilson Yan, Yunzhi Zhang, Pieter Abbeel, and Aravind
Srinivas. Videogpt: Video generation using vq-vae and trans-
formers. ArXiv, abs/2104.10157, 2021. 1, 6

[39] Denis Yarats, Rob Fergus, Alessandro Lazaric, and Lerrel
Pinto. Mastering visual continuous control: Improved data-
augmented reinforcement learning. In International Confer-
ence on Learning Representations (ICLR), 2022. 6, 11

[40] Tianhe Yu, Deirdre Quillen, Zhanpeng He, Ryan C. Julian,
Karol Hausman, Chelsea Finn, and Sergey Levine. Meta-
world: A benchmark and evaluation for multi-task and meta
reinforcement learning. In Conference on Robot Learning
(CoRL), 2020. 2, 6, 11

[41] Tianhe Yu, Ted Xiao, Austin Stone, Jonathan Tompson, An-
thony Brohan, Su Wang, Jaspiar Singh, Clayton Tan, Jodi-
lyn Peralta, Brian Ichter, et al. Scaling robot learning with
semantically imagined experience. ArXiv, abs/2302.11550,
2023. 2

[42] Kevin Zakka, Andy Zeng, Pete Florence, Jonathan Tomp-
son, Jeannette Bohg, and Debidatta Dwibedi. Xirl: Cross-
embodiment inverse reinforcement learning. In Conference
on Robot Learning (CoRL), 2022. 1, 2

[43] Richard Zhang, Phillip Isola, Alexei A Efros, Eli Shecht-
man, and Oliver Wang. The unreasonable effectiveness of
deep features as a perceptual metric. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recogni-
tion (CVPR), 2018. 5

[44] Ruijie Zheng, Xiyao Wang, Yanchao Sun, Shuang Ma, Jieyu
Zhao, Huazhe Xu, Hal Daum’e, and Furong Huang. Taco:
Temporal latent action-driven contrastive loss for visual re-
inforcement learning. ArXiv, abs/2306.13229, 2023. 1

10



[45] Jun-Yan Zhu, Richard Zhang, Deepak Pathak, Trevor Dar-
rell, Alexei A Efros, Oliver Wang, and Eli Shechtman. To-
ward multimodal image-to-image translation. Advances in
Neural Information Processing Systems (NeurIPS), 2017. 4

[46] Brian D Ziebart, Andrew L Maas, J Andrew Bagnell,
Anind K Dey, et al. Maximum entropy inverse reinforcement
learning. In Association for the Advancement of Artificial In-
telligence (AAAI), 2008. 8

A. Implementation Details

In this section, we provide further implementation details
on Diffusion Reward and baselines. Note that all methods
use the same RL backbone and maintain all settings except
reward pretraining (if exist) identical.

A.1. Diffusion Reward Implemenatation

Codebase. Our codebase of VQ-GAN [10] is built upon the
implementation in https://github.com/dome272/VQGAN-
pytorch, which provides clean code structure and show fast
inference speed. The codebase of VQ-Diffusion [12] is built
upon the official implementation, which is publicly avail-
able on https://github.com/microsoft/VQ-Diffusion. For
the downstream RL, we adopt the official implementation
of DrQv2 [39] as RL backbone, which is publicly avail-
able on https://github.com/facebookresearch/drqv2, and the
implementation of RND as exploration reward available
on https://github.com/jcwleo/random-network-distillation-
pytorch.

Network architectures. The major network architectures
employed in Diffusion Reward follow the original imple-
mentation provided by the codebase above (refer to corre-
sponding papers for more details), except for modifications
performed in the conditional video diffusion part. Specifi-
cally, each historical frame, encoded by the encoder E and
quantizer Q learned with VQ-GAN, is tokenized (8× 8) by
the condition network, concatenated with others (2×8×8),
fed into embedding networks with a dimension of 1024.
The resulting condition embedding with a dimension of
128× 1024 is passed to subsequent conditional diffusion.

Hyperparameters. We list the important hyperparameters
of VQ-GAN, VQ-Diffusion, DrQv2 with Diffusion Reward
in Table 4, 5, and 6, respectively.

Entropy estimation details. As described in Section 4.2,
the variational bound of conditional entropy in Eq. (1) can
be estimate by Eq. (3). Such estimation is realized with the
closed-form distribution [20, 32] (e.g., discrete multivari-
ate distribution) in this work. Specifically, the variational
bound of conditional log-likelihood in Eq. (1) can be sim-
plified following [32], resulting in our estimation of entropy

reward rce as follows:

rce(xk−1) =
1

M

M∑
j=1

(
log pθ(z̃

0
k|z̃1

k, zc)

+

T−1∑
t=1

DKL(q(z̃
t−1
k |z̃t

k, z̃
0
k)∥pθ(z̃t−1

k |z̃t
k, zc))

+DKL(q(z̃
T
k |z̃0

k)∥p(z̃T
k )

)
,

(6)

where DKL denotes the Kullback–Leibler divergence,
p(z̃T

k ) follows the prior distribution of random noise at
timestep T , and z̃0:T

k ∼ pθ(z
0:T
k |zc) represents the de-

noised samples via inverse diffusion process. We set M = 1
to ensure high reward inference speed while retaining its
discrimination on expert-like and -unlike behaviors. We
present more analyses in Section D.

A.2. Baselines Implementations

RND implementation. This baseline combines the sparse
environmental reward with the RND exploration reward,
which is equivalent to setting the reward coefficient α as 1
in Diffusion Reward. To this end, we implement this base-
line by simply removing the entropy reward and keeping
other settings identical.
VIPER implementation. We implement their adopted
VideoGPT based on the official code provided in
https://github.com/wilson1yan/VideoGPT with clean GPT
implementation from https://github.com/karpathy/minGPT.
The calculation of video prediction (log-likelihood) re-
wards follows the official JAX implementation pro-
vided in https://github.com/Alescontrela/viper rl, which
uses ’teacher-forcing’ practice [2] (where ground truth con-
text is provided for each step) for fast inference speed. The
coefficient between video prediction reward and RND ex-
ploration reward is set as 0.5 following their paper [9].
AMP implementation. The implementation is based on
the official code in https://github.com/xbpeng/DeepMimic
and re-implementation in https://github.com/med-air/DEX.
The encoder consists of three 32-channel convolutional lay-
ers interpolated with ReLU activation. The discriminator is
implemented as a 3-layer MLP with hidden dimensions of
256 and Tanh activation.

B. Task Descriptions
We select 7 gripper manipulation tasks from Meta-
World [40] and 3 dexterous manipulation tasks from
Adroit [28], as visualized in Figure 10. The tasks are widely
used in visual RL [13] and are chosen to be diverse in ob-
jects and manipulating skills. All tasks render 64 × 64-
dimensional RGB as the agent’s observation and produce
sparse environmental rewards. According to task complex-
ity, we collect 20 expert videos for each MetaWorld task
and 50 for each Adroit task. We describe each task below:
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MetaWorld Assembly MetaWorld Coffee Push MetaWorld Dial Turn MetaWorld Door Close MetaWorld Lever Pull

MetaWorld Peg Unplug Side MetaWorld Reach Adroit Door Adroit Hammer Adroit Pen

MetaWorld Coffee Button MetaWorld Drawer Open MetaWorld Faucet Open MetaWorld Window Open

MetaWorld Door Lock MetaWorld Handle Press MetaWorld Reach Wall MetaWorld Button Press

Figure 10. Task descriptions. (left) 10 seen training tasks from MetaWorld and Adroit. (right) 8 unseen tasks from MetaWorld.
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Figure 11. Ablations on diffusion process. The results in (a)
suggest that overmuch denoised samples (i.e., 4) may hinder the
exploration due to the low variance of estimated entropy. This
is further verified in (b) where an appropriate choice of sampling
noise scale results in more productive explorations. Results are
means of 3 seeds with standard errors (shaded area). Red is our
default.

• Assembly (MetaWorld, A ∈ R4): the task is to pick up
a nut and place it onto a peg with the gripper.

• Coffee Push (MetaWorld, A ∈ R4): the task is to
push a mug under the coffee machine to a target position
with the gripper.

• Dial Turn (MetaWorld, A ∈ R4): the task is to rotate
the dial with the gripper.

• Door Close (MetaWorld,A ∈ R4): the task is to close
the door with the arm.

• Lever Pull (MetaWorld, A ∈ R4): the task is to pull
a lever up with the arm.

• Peg Unplug Side (MetaWorld, A ∈ R4): the task is
to unplug a peg sideways with the gripper.

• Reach (MetaWorld, A ∈ R4): the task is to reach a tar-
get position with the end effector.

• Door (Adroit, A ∈ R28): the task is to open the door to
touch the door stopper.

• Hammer (Adroit, A ∈ R26): the task is to pick up the
hammer to hit the nail into the board.

• Pen (Adroit, A ∈ R18): the task is to reorient the pen
in-hand to a target orientation.

C. More Video Prediction Results
Qualitative results. We present the comparison between
expert videos and prediction results in Figure 14. We find
that the adopted video diffusion model is able to capture
the complex distribution of expert videos from pretraining
data and generalize well to unseen expert videos. Inter-
estingly, we also observe that the colored target points in
Door Close and Reach are sometimes mispredicted, which
may explain the relatively slow exploration at the initial RL
training stage, suggesting that a more powerful video dif-
fusion model could be used to further improve the reward
quality.
Quantitative analysis. We compare the video prediction
quality between Diffusion Reward and VIPER in terms of
three video metrics, SSIM, PSNR, and LPIPS. Results are
shown in Table 1, verifying that Diffusion models hold a
stronger generalization ability on unseen real robot and sim-
ulation trajectories than VideoGPT and thus produce more
informative rewards. For real robot videos, we use 16× 16
codes to represent images due to the scene complexity.

D. More Ablations
We conduct more ablations on our proposed Diffusion Re-
ward in this section. Results are aggregated over Door and
Hammer from Adroit with 3 random seeds.
Sparse environmental reward. The sparse environmen-
tal reward rspar is integrated into Eq. (5), as the environ-
mental supervision of completion is helpful for RL. We re-
move rspar to study its effect. The results in Figure 12
show that the performances decrease dramatically without
sparse environmental rewards, indicating that the signal of
task completion is necessary for solving complex manipu-
lation tasks. Interestingly, more favorable performance is
observed in the Door task. We attribute this to the over-
lap supervision of RND reward and sparse reward, i.e., ex-
ploring novel states (door opening) is partially equivalent to
completing the task.
Diffusion process. Recall that, in Eq. (3), we perform in-
verse process for M times, and use the generated M sam-
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Figure 12. Effect of sparse environmental reward. We demonstrate that incorporating sparse environmental reward as a task completion
signal is necessary for solving complex manipulation tasks. Results are means of 3 seeds with standard errors (shaded area).

ples to estimate the conditional entropy as rewards. The
results in Figure 11(a) show that the effect of the number
of denoised samples has a slight influence on RL perfor-
mance when increasing from 1 to 3. However, the learning
progress gets stuck in the middle state with 4 denoised sam-
ples, though the asymptotic performance is still satisfactory.
We posit that this is due to the low variance of estimated
entropy, which may lead to more weight on exploitation in-
stead of exploration.

To verify our hypothesis, we make a further ablation on
the scale of sampling noise (e.g., uniform distribution) dur-
ing the diffusion process. Different from Figure 9(b), we
gradually increase the sampling noise scale from 0 to 40.
The results in Figure 11(b) indicate that an excessively low
noise scale (e.g., 0) will bring low randomness of learned
reward, resulting in more exploitative behaviors, and too
high noise scale may produce more random explorations.
In contrast, an intermediate choice of noise scale will bring
an appropriate variance of estimated entropy, contributing
to productive explorations.

Meanwhile, we present the time efficiency of different
numbers of diffusion processes with NVIDIA A40 in Ta-
ble 3, where the Frames Per Second (FPS) decreases from
87.7 to 45.9 when the number of denoise samples increases
from 1 to 4. It suggests that using 1 denoised sample is
sufficient to provide informative rewards and retain high in-
ference speed.

M = 1 M = 2 M = 3 M = 4

FPS 87.7 67.5 55.8 45.9

Table 3. Time efficiency of the number of samples M on Door.
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Figure 13. More results of reward generalization. Diffusion
Reward exhibit better generalization ability than VIPER. Results
are means of 5 seeds with standard errors (shaded area).

E. More Generalization Experiments

Apart from 5 unseen tasks in Figure 7, we randomly select 3
more unseens tasks from MetaWorld to verify the zero-shot
generalization capability of Diffusion Reward. The result in
Figure 13 demonstrates that our method significantly out-
performs VIPER on most tasks. Notably, our method also
outperforms RND in Reach Wall in terms of productive ex-
ploration at the initial training stage. In the future, we will
investigate the possibility of incorporating other modalities
(e.g., text embedding for task description) to enhance the
generalization ability of Diffusion Reward.

F. Visualization of Reward and Trajectory in
Simulation and Real Robot

Simulation Results. We first visualize the reward curve
in 10 simulation tasks in Figure 15. Our proposed reward
can greatly distinguish the expert-like and -unlike behav-
iors. Interestingly, we observe that two door-opening tasks
show a return drop at the final execution stage. This may
be attributed to the difficulty of modeling the dynamics of
the door, suggesting that explicit modeling of environmen-
tal dynamics is worth investigating in the future.

Real Robot Results. We collect 20 real robot video trajec-
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tories with an Allegro hand, a Franka arm, and a RealSense
D435i camera. There is only one task, which is picking up
a bowl on the table. 10 of the videos are success trajecto-
ries while the other 10 are random trajectories. We train our
pipeline on the expert demonstrations and evaluate Diffu-
sion Reward on both expert and random trajectories. Visu-
alization results in Figure 16 show that Diffusion Reward
can correctly assign expert demonstrations relatively higher
reward and random trajectories lower reward.

Table 4. Hyperparameters for VQ-GAN.

Hyperparameter Value

Input size 64× 64× 3
Latent code size 8× 8
β (commitment loss coefficient) 0.25
Codebook size 1024
Codebook dimension 64
Base channels 128
Ch. mult. [128, 128, 256, 256]
Num. residual blocks 2
Use attention True
Disc. start steps 1000
Disc. loss weight 0.1
Reconstruction loss weight 1
Perceptual loss weight 0.1
Training epochs 200
Batch size 32
Learning rate 10−4

Adam optimizer (β1, β2) (0.5, 0.9)

Table 5. Hyperparameters for VQ-Diffusion.

Hyperparameter Value

Num. transformer blocks 16
Attention type Cross attention
Num. attention head 16
Embedding dimension 128
Block Activation GELU2
Layer Normalization Adaptive LN
Num. conditional frames 2
Condition embedding dimension 1024
Num. denoising steps 10
Sampling noise type Uniform
Adaptive auxiliary loss True
Auxiliary loss weight 10−3

Training epochs 100
Batch size 4
Learning rate 4.5× 10−4

AdamW optimizer (β1, β2) (0.9, 0.96)

Table 6. Hyperparameters for DrQv2 with Diffusion Reward.

Hyperparameter Value

Environment
Action repeat 3 (MetaWorld)

2 (Adroit)
Frame stack 1
Observation size 64× 64× 3
Reward type Sparse
DrQv2
Data Augmentation ±4 RandomShift
Replay buffer capacity 106

Discount γ 0.99
n-step returns 3
Seed frames 4000
Exploration steps 2000
Feature dimension 50
Hidden dimension 1024
Exploration stddev. clip 0.3
Exploration stddev. schedule Linear(1.0, 0.1, 3× 106)
Soft update rate 0.01
Optimizer Adam
Batch size 256
Update frequency 2
Learning rate 10−4

RND
CNN feature dimension 7× 7× 64
MLP size 512× 512
Learning rate 10−4

Diffusion Reward
Reward coefficient α 0 (Pen)

0.95 (Others)
Sampling noise True (scale 1)
Reward standardization r̄ce True
Num. diffusion processss M 1
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Figure 14. Video prediction results. Ground truth has blue borders and prediction has orange borders.
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Figure 15. Reward curve of 10 simulated tasks from MetaWorld and Adroit.
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Figure 16. Reward curve of real robot trajectories.
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